
Nonlinear regimes of the resonant acoustic transparency for longitudinal–transverse elastic

waves in low-temperature paramagnetic crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 1733

(http://iopscience.iop.org/0953-8984/16/10/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 12:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 1733–1749 PII: S0953-8984(04)67574-6

Nonlinear regimes of the resonant acoustic
transparency for longitudinal–transverse elastic waves
in low-temperature paramagnetic crystals

A V Gulakov and S V Sazonov

Physics Department, Kaliningrad State University, 14 Nevskogo Street,
Kaliningrad 236041, Russia

E-mail: nst@alg.kaliningrad.ru

Received 12 August 2003, in final form 11 February 2004
Published 27 February 2004
Online at stacks.iop.org/JPhysCM/16/1733(DOI: 10.1088/0953-8984/16/10/006)

Abstract
Nonlinear propagation of longitudinal–transverse acoustic pulses in the system
of resonant paramagnetic impurities is theoretically investigated. It is shown
that, under a large transverse pulse component and propagation along an external
magnetic field, a regime of acoustic self-induced transparency is realized. A
new soliton mode, following by reduction in the propagation velocity, similar
to the case of self-induced transparency is realized in the opposite limit.
Then, however, populations of the quantum Zeeman sublevels stay practically
unchanged and the transverse component of the pulse suffers phase modulation.

1. Introduction

Analysis of the development of coherent nonstationary phenomena in physics shows that,
besides other effects, corresponding optical phenomena have found their acoustic analogues
at the same time. Such a situation is the case for self-induced transparency (SIT) [1] and its
acoustic analogue (ASIT) [2–4]. One of the main differences for acoustic waves in solids
from the optical case is that acoustic waves have a longitudinal–transverse structure. Acoustic
self-induced transparency (ASIT) for longitudinal–transverse elastic waves in a paramagnetic
crystal on the spin system S = 1/2 was studied in detail in the following work [5, 6]. During
the propagation of pulses along the external magnetic field B two types of acoustic solitons
were revealed. They correspond to two opposite limiting cases, when the amplitude of one of
the components (transverse or longitudinal) is much larger than the other. The simple ASIT
regime is realized in the first case, when the propagation of the 2π pulse is accompanied by
population inversion of the Zeeman sublevels with the subsequent return of the medium to the
initial state. If the transverse component dominates the soliton mode is realized, during which
the populations of the Zeeman sublevels practically do not change. Note that, in both cases,
pulses experience practically the same slowing down in their propagation velocities [5].
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It is shown [6, 7] that the description of the propagation of resonant longitudinal–
transverse elastic pulses in a paramagnetic cubic crystal can be, under some assumptions,
restricted to systems of material and wave equations, which can be integrated by the inverse
scattering technique (IST). Analysis was carried out with the use of the slowly varying envelope
approximation (SVEA) for the transverse component and without any given approximation.
In the last case an approximation of the low density of paramagnetic centres was made. The
longitudinal component of the pulse in both cases has no carrier frequency, i.e. it was a video
pulse [5–7].

As was said above, paramagnetic impurities with effective spin S = 1/2 were considered
as the objects of interaction with acoustic pulses in solids [5–8]. At the same time it is well
known that paramagnetic centres with effective spin S = 1 feel the strongest interaction with
oscillations of the lattice [9]. Ions of Fe2+ and Ni2+ in a crystal matrix of MgO can be taken as
examples of the latter [2]. So, from the point of view of the experimental test of the theoretical
conclusion it seems appropriate to investigate ASIT for longitudinal–transverse elastic pulses,
propagating in a system of paramagnetic centres with effective spin S = 1. Thus, the present
paper is devoted to researching this problem.

The paper is organized as follows. In section 2, on the basis of the semi-classical
Hamilton formalism the system of material and wave equations, describing the propagation
of longitudinal–transverse hypersound in a system of paramagnetic impurities with effective
spin S = 1 is derived. For the transverse component, exciting the quantum transitions inside a
Zeeman triplet, SVEA is used. Contrary to the longitudinal hypersound component, producing
a dynamical shift of the quantum sublevels has no carrier frequency. For the given component in
view of the small concentration of paramagnetic impurities the approximation of unidirectional
propagation is used. This allows us to reduce the corresponding wave equation to first order with
respect to derivatives. In section 3 the material equations for the density matrix are solved with
the use of the asymptotical Wentzel–Brillouin–Kramers–Jeffry (WBKJ) method. As a result
the material variables are expressed through the wave variables and the investigation is reduced
to finding the solutions of the nonlinear integro-differential wave equations for transverse
and longitudinal components of the acoustic field. Corresponding analytical solutions in the
opposite limits of domination of the transverse and longitudinal components of the pulse are
studied in section 4. In the first case the ASIT mode is realized, while in the second limit we
have the soliton mode. This is called by us the acoustic longitudinal–transverse transparency
(ALTT). The intermediate case is investigated by means of numerical simulations for pulses,
propagating in the stationary regime. In the conclusion (section 5) we review the results
obtained here and indicate the future prospects for investigation.

2. Semiclassical self-consistent equations of motion

For the description of the interaction of the elastic field with paramagnetic centres we will
use the semi-classical approach, according to which the field will be described by classical
equations of the continuous medium and paramagnetic impurities by quantum mechanics
equations.

Let the external magnetic field B be oriented along the z axis which coincides with the
fourth-order axis of the cubic crystal, which contains paramagnetic impurities. Then the
Hamiltonian of some spin in the given field, which also interacts with oscillations of the
lattice, can be written in the following form:

Ĥ = ĤS + V̂ , (1)
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where its own Hamiltonian of spin is

ĤS = gµB BŜz. (2)

Here g is the Landé factor, µB is the Bohr magneton and the Hamiltonian V̂ of the spin–phonon
interaction in its most common form is a function of the bilinear combination of spin operators
Ŝ j ( j = x, y, z) [9]:

V̂ = f (Ŝi Qi j Ŝ j ). (3)

Spin matrices in the accepted geometry look like [20]

Ŝx = 1√
2

( 0 1 0
1 0 1
0 1 0

)
, Ŝy = i√

2

( 0 −1 0
1 0 −1
0 1 0

)
,

Ŝz =
( 1 0 0

0 0 0
0 0 −1

)
.

(4)

Elements Qi j of the matrix Q̂ depend on the components of the strain tensor

Eml = 1

2

(
∂Um

∂xl
+

∂Ul

∂xm

)
, (5)

where m, l = x, y, z; Um are the components of the displacement vector U of the continuous
medium; in (3) and hereafter iterated indexes mean summation.

In the absence of deformation Q̂ is an unitary matrix that is Qi j = δi j . Expanding Q̂
in (3) and then f in the series by Eml and limiting the linear terms, we will derive [10]

f = f (Ŝ2) + f ′(Ŝ2)

(
∂ Qi j

∂Eml

)
0

Ŝi Ŝ jEml ,

where the subscript ‘0’ means the derivative under the condition that Eml = 0. f (Ŝ2) here
can be rejected as an additive constant component to the spin Hamiltonian, dependent on the
Kazimir operator Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z = S(S +1) = 2. Then the Hamiltonian of the spin–phonon
coupling in the concerned approximation take the form [9, 10]

V̂ = Gi jmlEml Ŝi Ŝ j = 1
2 Gi jmlEml(Ŝi Ŝ j + Ŝ j Ŝi ), (6)

where the components of the tensor Ĝ of the spin–phonon interaction are Gi jml =
f ′(Ŝ2)(∂ Qi j/∂Eml)0.

From the definition of Ĝ and (3) one can see that its components are symmetric relative to
the transposition of index pairs i, j and m, l and also relative to the transposition inside these
pairs. This property was used in (6).

The physical mechanism of spin–phonon interaction in the concerned case is the so-
called Van Vleck mechanism [9, 11, 12], according to which the elastic wave modulates the
intracrystalline electric field in place of the disposition of paramagnetic ions. Gradients of the
given field then cause transitions between the Zeeman sublevels of ions.

Note that for spin S = 1/2 we have Ŝi Ŝ j + Ŝ j Ŝi = 0 because of the anticommutative
property of the Pauli matrix. Consequently, according to (6), V̂ = 0. In this case the
spin–phonon interaction is conditioned by modulation of the Landé tensor components by
the elastic field, and so the Hamiltonian of the spin–phonon coupling has become nonlinear
by spin operators [3, 8, 12, 13]. For the spin S = 1 the quadratic spin operator interaction has
become two orders of magnitude stronger than the linear [9, 11]. Because of this we neglect
the latter here.
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For the self-consistent description of the dynamics of spin and acoustic pulses let us add the
Hamiltonian of the elastic field to (2) and (6). As the given field is classical, so its Hamiltonian
in the approximation of a continuous medium has the form of a classical function [14]:

Ha = 1

2

∫ (
pi pi

ρ
+ Ci jkl

∂Ui

∂x j

∂Uk

∂xl

)
d3r, (7)

where ρ is the average density of the crystal, pi (i = x, y, z) are the components of the impulse
density p of the local displacement of the medium and Ci jkl are the components of the elastic
modulus tensor of the medium.

There are three independent elastic constants in the case of the cubic crystal: Cxxxx ≡ C11,
Cxxyy ≡ C12 and Cxyxy ≡ C44 (here the index Voight notation is used [9, 11]: xx → 1, yy → 2,
zz → 3, yz → 4, xz → 5, xy → 6). The expression (7) in that case takes the form [14]

Ha = 1

2

∫ [ p2
x + p2

y + p2
z

ρ
+ C11(E2

xx + E2
yy + E2

zz)

+ 2C12(ExxEyy + ExxEzz + EyyEzz) + 4C44(E2
xy + E2

xz + E2
yz)

]
d3r. (8)

Here the axes x , y and z coincide with the main axes of the fourth-order cubic crystal.
According to the general scheme of the semi-classical approach [5, 8, 10], spin evolution

will be described by the equation for the density matrix:

ih̄
∂ρ̂

∂ t
= [ĤS + V̂ , ρ̂], (9)

where h̄ is the Planck constant, and the dynamics of the acoustic field will be described by the
classical Hamilton equation for the continuous medium:

∂p
∂ t

= − δ

δU
(Ha + 〈 ˆ̃V 〉), ∂U

∂ t
= δ

δp
(Ha + 〈 ˆ̃V 〉). (10)

Here 〈 ˆ̃V 〉 = ∫
n〈V̂ 〉 d3r, n is the concentration of the paramagnetic centres and 〈V̂ 〉 ≡ Sp(ρ̂V̂ )

is the quantum average by the spin density matrix. In (9) we neglected the relaxation terms
considering that the duration of the acoustic pulse is shorter than all the relaxation times.
Hereafter we will also neglect inhomogeneous broadening.

The system of equations (9) and (10) with the use of (2), (6) and (7) allows us to describe
propagation of the acoustic pulse in any given direction with respect to B. Below we assume
that conditions of the Faraday geometry are realized, which means that the pulse propagates
along B (along the z axis). We will assume correspondingly that all dynamical variables
depend only on z and t . However, these variables are not dependent on x and y. Then three
non-zero components of the strain tensor remain: Ezz = E‖ = ∂Uz/∂z, Exz = 0.5∂Ux/∂z,
Eyz = 0.5∂Uy/∂z, Exx = Eyy = Exy = 0. In this case one can rewrite the expression (8) for
Ha in the form

Ha = 1

2

∫ {
p2

x + p2
y + p2

z

ρ
+ C11

(
∂Uz

∂z

)2

+ C44

[(
∂Ux

∂z

)2

+

(
∂Uy

∂z

)2
]}

d3r. (11)

For components of the tensor Ĝ we will use below the Voight notation [9, 11]. In view of
the cubic symmetry G23 = G13, G33 = G22 = G11, G55 = G44. In an effort to further
simplification of the expression for V̂ in a cubic crystal we note that, during inversion of
the coordinate axes x and y, the components of the spin operators change in the following
way [10]: x → −x , Ŝx → Ŝx , Ŝy → −Ŝy , Ŝz → −Ŝz ; y → −y, Ŝx → −Ŝx , Ŝy → Ŝy ,
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Figure 1. Scheme of the quantum transition during Zeeman splitting in the three-level system.
Here N is the number of the quantum level, M is a magnetic quantum number, the wavy arrow
is the quantum transition induced by the transverse component of the acoustic field and ↔ is a
dynamical chirp of the middle quantum level.

Ŝz → −Ŝz . Taking into consideration the invariance of V̂ relative to the given operations, we
write

V̂ = 3

2
G11 Ŝ2

z

∂Uz

∂z
+

1

2
G44

[
∂Ux

∂z
(Ŝz Ŝx + Ŝx Ŝz) +

∂Uy

∂z
(Ŝz Ŝy + Ŝy Ŝz)

]
. (12)

By summing all the above, after the use of (7), (10) and (12) we will have

∂2E⊥
∂ t2

− a2
⊥

∂2E⊥
∂z2

= n

2ρ
G44

∂2

∂z2
(ρ∗

32 − ρ∗
21), (13)

∂2E‖
∂ t2

− a2
‖
∂2E‖
∂z2

= − 3n

2ρ
G11

∂2ρ22

∂z2
, (14)

where the complex transverse strain is E⊥ ≡ (Exz + iEyz)/
√

2 and a⊥ = √
C44/ρ and

a‖ = √
C11/ρ are, respectively, the velocities of the transverse and longitudinal sound in

the absence of paramagnetic impurities.
Using (2), (4) and (6), one can rewrite the expression for the operator Ĥa + V̂ , appearing

in (9) in the matrix form

ĤS + V̂ =



h̄ω0 + 3
2 G11E‖ G44

2 E∗
⊥ 0

G44
2 E⊥ 0 − G44

2 E∗
⊥

0 − G44
2 E⊥ −h̄ω0 + 3

2 G11E‖


 , (15)

where ω0 = gµB B/h̄ is a frequency of the Zeeman splitting in the equidistant three-level
system with spin S = 1 (see figure 1). Note that numbering of the quantum levels goes from
the bottom to the top.

From (13)–(15) one can see that, in the Faraday geometry, the transverse component of
the acoustic field induces cascade quantum transitions 1 ↔ 2 and 2 ↔ 3. At the same time
the transverse component displaces the middle (with number 2) quantum level. Due to this,
the frequencies of the named transitions suffer a dynamical shift (see figure 1).

Further we will consider that the quasi-monochromatic circularly polarized transverse
component of the elastic pulse has a carrier frequency ω0 and wavenumber k = ω0/a⊥. Thus
we can write

G44

2h̄
E⊥ = �⊥ei(ω0t−kz), (16)

where �⊥ is the slowly varying envelope (with the dimension of frequency), satisfying the
condition ∣∣∣∣∂�⊥

∂ t

∣∣∣∣ � ω0|�⊥|,
∣∣∣∣∂�⊥

∂z

∣∣∣∣ � k|�⊥|.
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Non-diagonal components of ρ̂ will be given by

ρ32 = R32e−i(ω0t−kz), ρ21 = R21e−i(ω0 t−kz),

ρ31 = R31e−2i(ω0 t−kz),
(17)

where R32, R21 and R31 are the slowly varying envelopes with the same meaning as �⊥.
In compliance with SVEA during the substitution of (16) and (17) into (13) we will neglect

the second-order derivatives of �⊥ and both derivatives of ρ∗
32 and ρ21. Substitution of (16)

and (17) into (9) taking into consideration (15) and with the preservation of all items bring
us to the equation for the substantial matrix R̂ with dimensions of 3 × 3, in which diagonal
components are given by ρ33, ρ22 and ρ11 and non-diagonal by R32 = R∗

23, R31 = R∗
13 and

R21 = R∗
12.

The right-hand side of (14) contains the slow (in comparison with the fast oscillation with
frequency ω0 of the non-diagonal elements ρ̂) variable ρ22. Hence, the transverse component
of the displacement E‖ has no carrier frequency. Therefore we cannot apply SVEA to (14).
However, the reduction of the given equation with respect to derivatives can be performed,
using the other approximation, namely the approximation of the lower density of resonant
paramagnetic impurities. Meanwhile we note that the right-hand side of (14), proportional to
n, will be considered as a small perturbation. Also we note that such an approach, without
using SVEA, for the optical problems was first suggested in [15, 16]. In a zero approach by
n for the solution of (14) we have two waves, travelling in opposite directions with velocity
a‖. We neglect the wave travelling opposite to the z axis and will be interested only in the
wave propagating along the given axis. This approximation must be carried out well in the
paramagnetic sample, giving a small mistake in the input. Then in the first approach we write
the solution of (14) in the form E‖ = E‖(τ, ζ ), where the local time τ = t − z/a‖, the ‘slow’
coordinate ζ = µz and µ is a small (µ � 1) nondimensional parameter proportional to n. It
is obvious that

∂2E‖
∂ t2

= ∂2E‖
∂τ 2

,
∂E‖
∂z

= − 1

a‖
∂E‖
∂τ

+ µ
∂E‖
∂ζ

.

Neglecting the term ∼µ2, we write

∂2E‖
∂z2

≈ 1

a2
‖

∂2E‖
∂τ 2

− 2µ

a‖
∂2E‖
∂τ ∂ζ

.

Substituting the given expression for the derivatives into (14),after integration with respect
to τ and taking into account the zero values of the deformation and its derivatives at infinity
we obtain the first-order wave equation for E‖.

By summing all expressions after (16), we rewrite the system of wave and substantial
equations in the form of

∂�⊥
∂z

+

(
1

a⊥
− 1

a‖

)
∂�⊥
∂τ

= iβ⊥(R∗
32 − R∗

21), (18)

∂�‖
∂z

= −β‖
∂ρ22

∂τ
, (19)

∂ R̂

∂τ
= −i[�̂, R̂], (20)
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where

R̂ =
(

ρ33 R32 R31

R∗
32 ρ22 R21

R∗
31 R∗

21 ρ11

)
,

�̂ =

 �‖ �∗

⊥/2
√

2 0
�⊥/2

√
2 0 −�∗

⊥/2
√

2
0 −�⊥/2

√
2 �‖


 ,

�‖ = 3G11E‖/2h̄, β⊥ = nω0G2
44/(2

√
2h̄ρa3

⊥),

β‖ = 9nG2
11/(8h̄ρa3

‖).

(21)

We emphasize one more that wave equations for the transverse and longitudinal
components of the acoustic pulse are reduced from the initial second-order system (13) and (14)
to the first-order system (18) and (19) by different physical causes and with the use of different
mathematical approximations. In (18) the complex quantity �⊥ has a meaning of a slowly
varying envelope of the quasi-monochrome transverse pulse component with a carrier resonant
frequency ω. At the same time equation (19) is written not for the envelope but directly for the
longitudinal component �‖, which can have no carrier frequency at all. The equation for �‖
reduces to the form (19) because of the assumption about the low concentration of resonant
paramagnetic impurities.

From the derivation of (19) it is clear that the profile of the longitudinal component slowly
(∼µ) varies in the travelling framework, moving with a velocity a‖. For this reason that
approximation is sometimes called the slowly varying profile approximation (SVPA) [17],
which it is important not to confuse with the SVEA.

3. Nonlinear wave equations

Let us exempt material variables from (18)–(21) by the use of the operator variant of the
asymptotic Wentzel–Brillouin–Kramers–Jeffry (WBKJ) method [18, 19]. From (21) one can
see that the matrix �̂ does not commute with itself at different moments in time. However, if
the impulse excitation is sufficiently short the fluctuation of �̂ during this excitation time 
τ

is insignificant and one can talk about the approximate commutativity. Then [5]

R̂(τ ) = Û R̂(t0)Û
+, (22)

where the evolution operator is

Û = lim

τ→0

[exp(−iθ̂ )], (23)

where θ̂ = ∫ t0+
τ

t0
�̂ dτ ′ is the area operator and t0 is the starting time of the impulse excitation.

With the decrease in the pulse temporal duration its amplitude rises and the system (20)
and (21) takes a formal look of the linear equation with large variable coefficients. Given these
circumstance let us here talk about the application of WBKJ [18, 19].

The operator exponent can be calculated with the use of the Silvester formula [20]:

exp(−iθ̂ ) =
∑

j

∏
q �= j

θ̂ − λq Î

λ j − λq
exp(−iλ j ), (24)

where Î is the identity matrix and {λq} are the set of eigenvalues of θ̂ .
We reveal the indeterminacy of the type 0/0 in the multipliers behind the exponents by

L’Hôpital’s rule, also assuming that in the limit λ j ≈ p j
τ ≈ ∫ t0+
τ

t0
p j dτ , where {p j} is the

spectrum of the eigenvalues of the matrix �̂.



1740 A V Gulakov and S V Sazonov

Then, using (23) and (24), we obtain

Û =
∑

j

∏
q �= j

�̂ − pq Î

p j − pq
exp

(
−i
∫ τ

−∞
p j dτ ′

)
. (25)

Here time t0 formally tends to −∞.
From (21) without difficulty we find

p1 = �‖, p2,3 = (�‖ ± �)/2, � =
√

�2
‖ + |�⊥|2. (26)

Considering that before the impulse excitation

R̂(t0) = R̂(−∞) =
(W3 0 0

0 W2 0
0 0 W1

)
,

where W j ( j = 1, 2, 3) are the initial populations of the quantum Zeeman sublevels, satisfying
the condition W1 + W2 + W3 = 1, from (22), (25), (26) and (21) we will have

R∗
32 − R∗

21 = �⊥√
2�

[
(1 − 3W2)

�‖
�

sin
θ

2
+ i(W1 − W3) cos

θ‖
2

]
sin

θ

2
, (27)

ρ22 = W2 +
1 − 3W2

2

( |�⊥|
�

)2

sin2 θ

2
. (28)

Here θ‖ = ∫ τ

−∞ �‖ dτ ′, θ = ∫ τ

−∞ � dτ ′. The common property of the approximate solutions,
derived with the help of the WBKJ method, is that coefficients of a periodic function vary
slowly. Then the given functions change over time [18, 19]:

∂ρ22

∂τ
= 1 − 3W2

2

∂

∂τ

( |�⊥|
�

)2

sin2 θ

2

≈ 1 − 3W2

2

( |�⊥|
�

)2
∂

∂τ

(
sin2 θ

2

)
= 1 − 3W2

2

|�⊥|2
�

sin θ.

From here, and also from (18), (19) and (27) after the representation �⊥ = |�⊥|eiϕ we will
derive a system of nonlinear integro-differential wave equations:

∂|�⊥|
∂z

+

(
1

a⊥
− 1

a‖

)
∂|�⊥|

∂τ
= −α⊥

|�⊥|
�

cos
θ‖
2

sin
θ

2
, (29)

∂ϕ

∂z
+

(
1

a⊥
− 1

a‖

)
∂ϕ

∂τ
= σ⊥

�‖
�2

sin2 θ

2
, (30)

∂�‖
∂z

= −α‖
|�⊥|2

�
sin θ, (31)

where α⊥ = β⊥(W1 −W3)/
√

2, σ⊥ = β⊥(1−3W2)/
√

2 and α‖ = β‖(1−3W2)/4. The system
of (29)–(31) describes nonlinear interactions between long wave longitudinal and short wave
transverse elastic components by resonant paramagnetic impurities. From (31) one can see
that the transverse component can generate the longitudinal component. The presence of the
latter drives the phase modulation of the transverse component. Obviously, the interaction
between both components will be most effective when a⊥ = a‖. The given equality itself
expresses the condition of long–short wave resonance of Zakharov–Benney [21]. If the short
wave component does not stay in resonance with the atomic subsystem, the latter is excited
slightly. The regime of long–short wave resonance in this case is described by the system of
Zakharov having weak power nonlinearity [22]. The unidirectional variant of the Zakharov
system is the integrated system of Yajima–Oikawa [21–23]. In our case a strong interaction of
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the field with the medium takes place, generally speaking, because of the transverse component
and spin subsystem resonance. So, nonlinear systems (29)–(31) have a pronounced nonpower
nature.

The following is based on analysis of the system of equations (29)–(31).

4. Transparency regimes

Let the acoustic wave be clearly transverse, i.e. �‖ = 0. In this case � = |�⊥|. Introducing
a new variable θ⊥ = θ/2 = (1/2)

∫ τ

−∞ �⊥ dτ ′, from (29) we arrive at the well known theory
of the ASIT sine-Gordon equation:

∂2θ⊥
∂z ∂τ⊥

= −α⊥
2

sin θ⊥, (32)

where τ⊥ = t − z/a⊥, obtained in [3] for the case of a two-level system.
the one-kink solution of equation (32) has the form

θ⊥ = 4 arctan

[
exp

(
t − z/v

τp

)]
, (33)

where the velocity of propagation in the laboratory coordinate system is

1

v
= 1

a⊥
+

α⊥
2

τ 2
p , (34)

where τp is the duration of the envelope soliton of the transverse component of the form

|�⊥| = 2
∂θ⊥
∂τ

= 4

τp
sech

(
t − z/v

τp

)
. (35)

Expressions for the populations ρ11 and ρ33, derived from (22), (25) and (26) in the common
case, are rather large. For its simplification we will consider the temperature T of the
paramagnetic crystal to be so low that T � h̄ω0/kB, where kB is the Boltzmann constant.
Under ω0 ∼ 1011 s−1 we have T � 1 K. Then we can consider that W1 = 1, W2 = W3 = 0.
In that case from (22), (25) and (26) we find

ρ11 = 1

4

(
1 + cos2 θ

2
+ 2 cos

θ‖
2

cos
θ

2
+ 2

�‖
�

sin
θ‖
2

sin
θ

2
+

�2
‖

�2
sin2 θ

2

)
. (36)

The expression for ρ33 one can determine from the relation ρ33 = 1 − ρ11 − ρ22. Then from
here and also from (28), (36) and (33) we will have

ρ11 = tanh4

(
t − z/v

τp

)
,

ρ22 = 2 tanh2

(
t − z/v

τp

)
sech2

(
t − z/v

τp

)
,

ρ33 = sech4

(
t − z/v

τp

)
.

(37)

We can take into account the longitudinal component, assuming in (31) � = |�⊥|, θ = 2θ⊥.
Then using (33) and (35), we find

�‖ = 16α‖
α⊥τ 2

p
tanh2

(
t − z/v

τp

)
sech2

(
t − z/v

τp

)
. (38)

However, such consideration of �‖ corresponds to the limit |�⊥|2 � �2
‖.
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The longitudinal component of the acoustic field gives rise to phase modulation of the
transverse component, as follows from (30).

Assuming in the considered limit � = |�⊥|, θ = 2θ⊥, from (30), (32) and (34) and taking
into account (see (33))

∂ϕ

∂z
= −

(
1

v
− 1

a⊥

)
∂ϕ

∂τ⊥
= −α⊥

2
τ 2

p
∂ϕ

∂τ⊥
,

we will find

δω = − 8α‖
α⊥τ 2

p

tanh4

(
t − z/v

τp

)
sech2

(
t − z/v

τp

)
(39)

for the local frequency shift δω = ∂ϕ/∂τ⊥
Running profiles |�⊥|, �‖, δω, and also populations of the quantum levels, corresponding

to the limit |�⊥|2 � �2
‖ are presented in figure 2. One can see that, in the process of pulse

propagation, spins from the ground level go first to the middle, and then to the third level. The
state of the medium, in which all spins are concentrated on the topmost level, corresponds to
the central part of the acoustic pulse, where both its components are maximum in value. After
propagation of the pulse spins return to the ground state with use of the cascade transition
3 → 2 → 1. The decrease in propagation velocity of SIT and ASIT is usually described
just by the processes of excitation and subsequent deexcitation of the medium [1, 2]. The
local frequency of the transverse component, according to (39), near the front and back edges
feels a shift (figure 2). It could be explained in the following manner. From (15) and (38)
one can see that the longitudinal component displaces the middle level downwards, increasing
and decreasing the effective quantum frequencies ωef of the transitions 1 ↔ 2 and 2 ↔ 3,
respectively. At the front and rear edges of the pulse, as has been mentioned earlier, the
transition 1 ↔ 2 is present. The transverse component decreases its local frequency near
both edges, tending to stay in resonance with the transition 1 ↔ 2 according to the principle
of Le Chatelier and Brown [24]. In the centre, where the transition 2 ↔ 3 dominates the
longitudinal component is equal to zero. The local frequency of the transverse component, in
accordance with the previous reasoning, decreases again to the initial value ω0.

Let us now increase the longitudinal component so that the condition �2
‖ � |�⊥|2 is

achieved. Then θ ≈ θ‖. Let us also say a‖ = a⊥. The latter restriction is rather artificial
(in solids a‖ > a⊥), but it allows us to substantially simplify the mathematical calculations in
the following. We will show at the end of the present section that, using typical parameters
for the medium and acoustic pulses used in the experiments, the given restriction is not very
substantial from the physics point of view. In that case (29) and (31) will be rewritten in the
form

∂|�⊥|
∂z

= −α⊥
|�⊥|
2�

sin θ‖,
∂�‖
∂z

= −α‖
|�⊥|2

2�
sin θ‖. (40)

From here after multiplication of the first equation by 2|�⊥| and integration with consideration
of the zero values of 2|�⊥| and �‖ at infinity we will arrive at

�‖ = α‖
α⊥

|�⊥|2. (41)

Note that a similar relation between �‖ and |�⊥|2 was found in [6] by solving the problem of
longitudinal–transverse acoustic pulses propagating in the system of paramagnetic impurities
with effective spin S = 1/2.

From (40) and (41), taking into account the limit concerned is � ≈ �‖, we come again
to the sine-Gordon equation:

∂2θ‖
∂z ∂τ

= −α⊥ sin θ‖. (42)
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Figure 2. Schematic view of the running dimensionless profiles |�⊥|, �‖, δω, population of the
quantum levels and Re �⊥ in the case of |�⊥|2 � �2‖ (the ASIT regime).
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This equation is the same as (32) given the substitutions θ⊥ → θ‖ and α⊥/2 → α‖.
From here and from (41) we will find the corresponding one-soliton equations:

θ‖ = 4 arctan

[
exp

(
t − z/v

τp

)]
, (43)

�‖ = 2

τp
sech

(
t − z/v

τp

)
, (44)

|�⊥| =
√

2α⊥
α‖τp

sech1/2

(
t − z/v

τp

)
, (45)

1

v
= 1

a⊥
+ α⊥τ 2

p . (46)

Using (28), we find

δω = ∂ϕ

∂τ
= − 1

τp
sech

(
t − z/v

τp

)
. (47)

From this one can see that, in the limit of the large longitudinal component, the local frequency
of the transverse component experiences a negative shift in the centre of the pulse. To
understand this given situation, it is necessary to analyse the behaviour of the quantum level
populations. Assuming in (36) � = �‖, θ = θ‖, we find ρ11 ≈ 1. From (28) it also follows
that changes in ρ22 are vanishingly small: ρ22 ∼ (|�⊥|/�‖)2 � 1 in the limit concerned. So,
the populations of quantum levels in practice do not suffer dynamics during propagation of the
soliton of the form (43) and (45). In our case (T � h̄ω0/kB) all spins in practice stay in the
ground state. This happens because the large longitudinal component eliminates the transverse
component from resonance with the medium. It is evident from (44) and (15) that the transition
1 ↔ 2 experiences a negative frequency shift. According to this, phase modulation of the
transverse component brings about a decrease of the local carrier frequency in the centre.

In spite of the capture of the quantum level populations, the given regime of acoustic
transparency is accompanied by a decrease in the propagation velocity even greater than in the
case of the large resonant transverse component, when the regime of simple ASIT is realized
(see (34) and (46)). Here an analogy to the electromagnetically induced transparency effect
arises. In the latter case the three-level system of λ transitions becomes transparent for the
transition 1 ↔ 3 in the presence of the power pumping resonance to the transition 2 ↔ 3. It is
also accompanied by the determination of populations and group velocity upon the substantial
decrease in the signal [25, 26].

In our case the capture of populations is reached by the video pulse of a longitudinal wave.
The decrease in the propagation velocity, according to (46), depends only on the parameters
of the interaction of the transverse wave and spins. Therefore we term the concerned effect
the acoustic longitudinal–transverse transparency (ALTT).

Here one can understand the mechanism of the slowing down of propagation on the basis
of the dispersion law analysis. Thus, from (27) and (28) one can see that at �2

‖ � |�⊥|2
non-diagonal elements R̂, forming the dispersion law, are linear on small deviations |�⊥|/�‖,
and not quadratic, at vanishingly small changes in the population. So, the influence of the
paramagnetic impurities on the velocity is determined by diagonal elements of R̂. Assuming
in (42) θ‖ ∼ exp(iδωt − iδkt), after linearization sin θ‖ ≈ θ‖ we find the dispersion equation
δk = δω/a⊥ − α⊥/δω. Here δω and δk have the corresponding meanings of spectral shifts
from the carrier frequency ω0 and wavenumber k. From here we find 1/v = dδk/dδω =
1/a⊥ + α⊥/(δω)2 for the group velocity. Taking (δω)2 ∼ 1/τ 2

p (see (46)), we arrive at the
relation (46).



Resonant acoustic transparency for longitudinal–transverse elastic waves 1745

In figure 3 profiles of the longitudinal �‖ and transverse |�⊥| components, changes of the
local frequency δω for the latter and populations of the quantum spin levels are shown. From
the comparison of figures 2 and 3 one can see the principal differences between the ASIT and
ALTT regimes. One of the main differences consists in the dynamics of the populations of
spin quantum levels: in the case of ASIT a full inversion of populations with a subsequent
return to the initial state takes place, while during the ALTT regime the populations stay
practically unchanged. The consequence of this difference is the different character of the
phase modulation of the transverse component during ASIT and ALTT (see figures 2 and 3).

Using (44) and (45) we rewrite the condition �2
‖ � |�⊥|2, at which the ALTT regime can

be realized, in the form

1 � ω0τp � (3G11/2G44)
2. (48)

The left-hand side of this double inequality corresponds to the criterion of quasi-
monochromaticity of the transverse component, and the right-hand side is the condition of
large longitudinal component.

To satisfy both parts of inequality (48) then G11/G44 ∼ 10. The search for materials with
such properties is not a very simple problem. Therefore it is necessary to note the works [6, 7]
where the problem of ASIT for longitudinal–transverse waves in the system of spins S = 1/2
was solved without SVEA for the transverse component. In this case the accomplishment
of the quasi-monochromaticity condition is not necessary, but at the same time we have to
mention the resonant interaction of the pulse with the medium. So, the model of the system
of spins S = 1/2 cannot be fully adequate to represent the real situation.

Note that values of the relative deformation E‖ and |E⊥| during ALTT are large in value.
The inequality �2

‖ � |�⊥|2 will be held to be true due to G2
11 � G2

44.
Equation (42) and expressions (41), (43)–(47) are obtained by us for the case of the

equality of velocities of transverse a⊥ and longitudinal a‖ sound. Usually a‖ > a⊥ is in the
solid state [14, 27]. One can obtain the stationary solution, corresponding to the running waves,
in this case too. In fact, assuming that dynamical parameters in (29)–(31) depend on z and τ

in the form ξ ≡ τ − (1/v − 1/a‖)z, we will find the system of ordinary integro-differential
equations

|�⊥|′ = γ⊥
|�⊥|
�

cos
θ‖
2

sin
θ

2
, (49)

ϕ′ = −σ⊥
�‖
�2

sin2 θ

2
, (50)

�′
‖ = γ‖

|�⊥|2
�

sin θ, (51)

where γ⊥ = α⊥/(1/v − 1/a⊥), γ‖ = α‖/(1/v − 1/a‖) and primes mark the derivatives with
respect to ξ .

In the limit of ALTT (θ ≈ θ‖) from (49) and (51) we will arrive at an expression of the
form (41), taking into account the substitution

α‖
α⊥

→ α‖
α⊥

1/v − 1/a⊥
1/v − 1/a‖

,

and also the equation

θ ′′
‖ = 1

τ 2
p

sin θ‖,

where 1/τ 2
p = α⊥/(1/v − 1/a⊥).
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Figure 3. Schematic view of the running dimensionless profiles |�⊥|, �‖, δω, population of the
quantum levels and Re �⊥ in the case of |�⊥|2 � �2‖ (the ALTT regime).
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Figure 4. Results of the numerical analysis of system (49)–(51).

The solution of the given equation, corresponding to the solitary longitudinal–transverse
pulse, is given by (43). From here one can see that the expression (46) is correct in the presence
of detuning between a‖ and a⊥. Expressions (44) and (47) also do not change their form. At
the same time, in (45) it is necessary to make a substitution

α⊥
α‖

→ α⊥
α‖

[
1 +

1

α⊥τ 2
p

(
1

a⊥
− 1

a‖

)]
. (52)

From the comparison of (44) and (45), taking into account the given substitution, we make
a derivation about the relative decrease of the role of the transverse component video pulse in
the presence of a velocity shift, as 1/a⊥ > 1/a‖. Because of the given shift the effectiveness of
the energy pumping from the quasi-monochromatic transverse component into the video pulse
of the longitudinal wave decreases. One could also mention the violation of the condition
of long–short wave resonance of Zakharov–Benney type. Taking for Fe2+:MgO [10, 28]
n ∼ 1017 cm−1, ω0 ∼ 1011 s−1, G44 ∼ 10−13 erg, ρ � 2 g cm−3, a⊥ � 5 × 105 cm s−1,
a‖ � 106 cm s−1 and τp ∼ 10−8 s, we find (1/a⊥ − 1/a‖)/(α⊥τ 2

p ) ∼ 10−2 � 1 (see (52)).
Thus, typical shifts of a⊥ and a‖ cannot, in principle, influence the observation of ALTT under
experimental conditions.

From the previous analysis one can see that the ASIT regime changes to ALTT on the
continuous increase of the longitudinal component with respect to the transverse.

For clarification of the nature of the conversion from ASIT to ALTT the system (49)–(51),
in which an assumption is made that stationary running pulses are formed in the medium, was
subjected to numerical analysis. The corresponding results are displayed in figure 4. As far
as the specific gravity of the two-peaked longitudinal component is increased a small hole
appears in the centre of the transverse component. With the further increase of �‖ the hole
becomes deeper and two maxima appear in the profile of |�⊥|, moving away from each other.
During �2

‖ � |�⊥|2 the maxima disperse so far that they can be considered individually as
solitary pulses. As far as peaks in the profiles of |�⊥| and �‖ disperse equivalently happens
with peaks in the δω profile: each of the peaks correlates with the corresponding peaks in
the transverse and longitudinal components. In this way the phase modulated pulse of ASIT
(figure 2) shades into the ALTT pulse (figure 3). The same reasoning is also used for the
dynamics of the ground spin state population. Note that the results of numerical simulations
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are in good agreement with analytical solutions, which were obtained here for two opposite
cases, corresponding to ASIT and ALTT.

5. Conclusion

In the present work an investigation is conducted to show that consideration of the
two-component (longitudinal–transverse) structure of the acoustic pulse results in a deep
understanding of resonant transparency mechanisms in the system of paramagnetic impurities.
In this case the roles of both components are strongly varied: the transverse component induces
quantum transitions between resonant Zeeman sublevels, while the longitudinal component
changes the frequencies of the given transitions in a dynamical way. In just such a geometry
(Faraday geometry) for two opposite limits we predict two soliton regimes for the propagation
of acoustic pulses, corresponding to ASIT and ALTT. In order of magnitude the decrease in the
propagation velocity of pulses in both limits is equal. However, the behaviour of the medium
is different: in the first case the full inversion of quantum level populations happens, while in
the second case the populations practically do not change.

During propagation of the acoustic pulse under an arbitrary angle the longitudinal
component can excite a transition 1 ↔ 3 [2]. Just as in the case of ASIT, when a particular
longitudinal pulse propagated at an angle of 45◦ to the direction of B0, calling it a 1 ↔ 3
transition was considered in [2]. So the investigation of longitudinal–transverse resonant
pulse propagation under arbitrary angles with regard to B0 was interesting. It was not excepted
that in the process new nonlinear mechanisms for resonant acoustic transparency could be
realized.

Usually in solids the quantum transitions between Zeeman sublevels are subjected to strong
inhomogeneous broadening, which, generally speaking, it is necessary to consider. For two-
component pulses the consideration given seems not so simple,as in the case of one-component
(longitudinal [2] or transverse [3]) pulses. However, later we are planning to work on solving
this problem and the problem of the area theorem for longitudinal–transverse acoustic pulses.
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